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Highlight of Career Journey

• BS in EE @ SNU, MS & PhD in EE @ Stanford University

– Convex Optimization - Theory, Algorithms & Software

– advised by Prof. Stephen P. Boyd

• Principal Engineer @ Samsung Semiconductor, Inc.

– AI & Convex Optimization

– collaboration with DRAM/NAND Design/Manufacturing/Test Teams
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Today

• Machine Learning Prerequisites - 5

– linear algebra basics, calculus basics, statistics basics

– discrete random variables, continuous random variables

• Machine Learning Basics - 53

– optimal estimator, bias & variance, MLE, MAP, Bayesian inference

– ML - supervised learning, unsupervised learning, reinforcement learning, formulations

– DL - CNN, RNN

– DNN training using SGD with backpropagation

• Studying AI - 95

– tips, some books, online courses, Andrew Ng!

• Appendix

– Reinforcement Learning - 100

• Selected references - 162

• References - 164
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Scalars, vectors, and matrices

• real number a ∈ R, called scalar

• (ordered) collection of real numbers (a1, . . . , an) ∈ Rn, called vector
a1
a2
...

an

 ∈ Rn - column vector

[
a1 a2 · · · an

]
∈ R1×n

- row vector

• (ordered) collection of 2-dimensional array, called matrix
A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
... ... . . . ...

Am,1 Am,2 · · · Am,n

 ∈ Rm×n
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Transposes

• transpose of row vector is column vector & vice versa

[
a1 a2 · · · an

]T
=


a1
a2
...

an

 &


a1
a2
...

an


T

=
[
a1 a2 · · · an

]

• transpose of m-by-n matrix is n-by-m matrix
A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
... ... . . . ...

Am,1 Am,2 · · · Am,n


T

=


A1,1 A2,1 · · · Am,1

A1,2 A2,2 · · · Am,2
... ... . . . ...

A1,n A2,n · · · Am,n

 ∈ Rn×m
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Matrix-vector multiplication

• for matrix A ∈ Rm×n & vector b ∈ Rn

– matrix-vector multiplication Ab defined by

Ab =


A1,1b1 + A1,2b2 + · · ·+ A1,nbn
A2,1b1 + A2,2b2 + · · ·+ A2,nbn

...

Am,1b1 + Am,2b2 + · · ·+ Am,nbn

 ∈ Rm

in other words

(Ab)i =

n∑
j=1

Ai,jbj for 1 ≤ i ≤ m

– resulting quantity is vector of length m

– number of columns of A must equal to length of b
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Matrix-matrix multiplication

• for matrices A ∈ Rm×n & B ∈ Rn×p

– matrix-matrix multiplication AB ∈ Rm×p defined by

(AB)i,j =

n∑
k=1

Ai,kBk,j for 1 ≤ i ≤ m

– resulting quantity is m-by-p matrix

– order matters and number of columns of A must equal to number of rows of B

• note matrix-vector multiplication is special case of matrix-matrix multiplication

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Linear Algebra Basics 10



Calculus Basics



Sunghee Yun Oct 06, 2025

Functions

• f : X → Y

– X = dom f - domain of f

– Y - codomain of f

– R(f) = {f(x) ∈ Y |x ∈ X} - range of f
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Differentiation & derivatives

• for real-valued function f : R→ R

– derivative of f at x ∈ R

f
′
(x) =

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

∈ R

- derivative exists if and only if limit exists

– second derivative of f at x ∈ R

f
′′
(x) =

d2

dx2
f(x) = lim

h→0

f ′(x+ h)− f ′(x)
h

∈ R

- second derivative exists if and only if limit exists
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Multivariate functions

• f : Rn → R - real-valued multivariate function

f(x) = f



x1

x2
...

xn


 = f(x1, x2, . . . , xn) ∈ R

• examples

– f : R3 → R - linear function

f(x) = x1 + 3x2 + 2x3

– f : R3 → R - convex quadratic function

f(x) = x
2
1 + x1x2 + 3x

2
2 + 5x

2
3
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Multivariate vector functions

• f : Rn → Rm - real-valued multivariate vector function

f(x) =


f1(x)

f2(x)
...

fm(x)

 ∈ Rm

where fj : R
n → R for 1 ≤ j ≤ m

• examples

– f : R3 → R2 - linear function

f(x) =

[
x1 + 3x2 + 2x3

−3x2 + x3

]
∈ R2

– f : R3 → R3 - componentwise function

f(x) =
[

exp(x1) exp(x2) exp(x3)
]T ∈ R3
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Partial derivative & gradient

for f : Rn → R

• ith partial derivative

∂

∂xi
f(x) =

f(x+ hei)− f(x)
h

=
f(. . . , xi−1, xi + h, xi+1, . . .)− f(x)

h

where ei ∈ Rn is ith unit vector

• gradient is vector of partial derivatives

∇f(x) =


∂f(x)/∂x1

∂f(x)/∂x2
...

∂f(x)/∂xn

 ∈ Rn

• we have

(∇f(x))i =
∂

∂xi
f(x) = e

T
i ∇f(x) ∈ R
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Jacobian

for f : Rn → Rm

• Jacobian matrix

Df(x) =


∂f1(x)

∂x1

∂f1(x)

∂x2
· · · ∂f1(x)

∂xn
∂f2(x)

∂x1

∂f2(x)

∂x2
· · · ∂f2(x)

∂xn
... ... . . . ...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

 ∈ Rm×n

– equivalently

Df(x) =


∇f1(x)T

∇f2(x)T
...

∇fm(x)T

 ∈ Rm×n
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Chain rule

• for f : R → Rm, g : Rm → R & h = g ◦ f , i.e., h(x) = g(f1(x), . . . , fm(x)),

derivative of h at x ∈ R

h
′
(x) =

m∑
j=1

∂

∂yj
g(f(x))f

′
j(x) =

m∑
j=1

∇g(f(x))jf ′j(x) ∈ R

• for f : Rn → Rm, g : Rm → Rp & h = g ◦ f , Jacobian of h at x ∈ Rn

Dh(x) = Dg(f(x))Df(x) ∈ Rp×n

- note Dg(f(x)) ∈ Rp×m & Df(x) ∈ Rm×n

• first is special case of second
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Random experiments & probability law

• random experiment

– outcome varies in unpredictable fashion (even) when experiment is being repeated

under same conditions

– specified by stating experimental procedure and set of one or more measurements or

observations

• probability law

– rule assigning probabilities to events of experiment that belong to event class F

p : F → R+

• properties (or axioms)

– for event A ∈ F , p(A) called probability of A

– for event A,B ∈ F with A ∩ B = ∅

p(A ∪ B) = p(A) + p(B)
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Conditional probability

• probability of event A given that event B has occurred, called conditional probability,

denoted by

p(A|B)

• formula

p(A|B) =
p(A ∩ B)

p(B)

– thus

p(A ∩ B) = p(A|B)p(B) = p(B|A)p(A)

• Bayes’ theorem

p(A|B) =
p(B|A)p(A)

p(B)
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Independence

• for events A & B, when knowledge of occurrence of B does not alter probability of A

– A said to be independent of B

• following statements are equivalent

– A is independent of B

– B is independent of A

– p(A|B) = p(A)

– p(B|A) = p(B)

– p(A ∩ B) = p(A)p(B)
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Random variables

• discrete random variable X assumes values from countable set {x1, x2, . . .}

• continuous random variable X assumes values from R

• random vector X assumes values from Rn
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PMF, PDF & CDF

• probability mass function (PMF) of discrete X ∈ R

pX(x) = p(X = x)

• probability density function (PDF) of continuous X ∈ R∫ b

a

pX(x) = p(a ≤ X ≤ b)

• cumulative distribution function (CDF) of (any) X ∈ R

FX(x) = p(X ≤ x)

– for discrete X - FX(x) =
∑

x′≤x pX(x
′)

– for continuous X - FX(x) =
∫ x
−∞ pX(x

′)dx′
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Joint PMF, PDF & CDF

• joint PMF of discrete X & Y

pX,Y (x, y) = p(X = x & Y = y)

• join PDF of continuous X & Y∫ d

c

∫ b

a

pX,Y (x, y)dxdy = p(a ≤ X ≤ b & c ≤ Y ≤ d)

• joint CDF of X & Y

FX,Y (x, y) = p(X ≤ x & Y ≤ y)
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Joint PMF, PDF & CDF - random vector

• (joint) PMF of discrete X ∈ Rn

pX(x) = p(X1 = x1 & · · · & Xn = xn)

• (join) PDF of continuous X ∈ Rn∫ bn

an

· · ·
∫ b1

a1

pX(x)dx1 · · · dxn = p(a1 ≤ X1 ≤ b1 & · · · & an ≤ Xn ≤ bn)

• (joint) CDF of X ∈ Rn

FX(x) = p(X1 ≤ x1 & · · · & Xn ≤ xn)
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Expected value, variance & covariance matrix

• expected value

– for discrete X

EX =
∑
x

xpX(x)

– for conditions X

EX =

∫ ∞

−∞
xpX(x)dx

• variance for scalar X ∈ R

Var(X) = E(X − EX)
2
= EX

2 − (EX)
2

• covariance matrix for vector X ∈ Rn

Var(X) = E(X − EX)(X − EX)
T
= EXX

T − (EX)(EX)
T
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Conditional expectation

for two random variables X & Y

• expected value of Y conditioned on X

E(Y |X = x) =

∫
yp(y|x)dy

where

p(y|x) =
pX,Y (x, y)

pX(x)

• note

E
X,Y

f(X,Y ) = E
X
E
Y
(f(X,Y )|X)

because ∫ ∫
f(x, y)p(x, y)dxdy =

∫ (∫
f(x, y)p(y|x)dy

)
p(x)dx
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Bernoulli distribution

• model single binary trial with probability p of success (and, hence (1− p) of failure)

• PMF, mean, variance

p(k) = p
k
(1− p)1−k =

{
1− p if k = 0

p if k = 1

E(X) = p Var(X) = p(1− p)

• ML applications - (foundation for)

– logistic regression, binary classification, modeling click-through rates, A/B testing

outcomes
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Binomial distribution

• model number of successes in n independent Bernoulli trials with probability p

• PMF, mean, variance

p(k) =

(
n

k

)
p
k
(n− p)1−k for 1 ≤ k ≤ n

E(X) = np Var(X) = np(1− p)

• ML applications

– modeling conversion rates, quality control testing, ensemble voting methods, batch

processing success rates
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Multinomial distribution

• generalizes binomial distribution to multiple categories with probabilities p1, . . . , pk

• PMF, mean, variance

p(k) =
n!

x1! · · · · · xk!
p
x1
1 · · · p

xk
k

E(Xi) = npi Var(Xi) = npi(1− pi) Cov(Xi, Xj) = −npipj

• ML applications

– multi-class classification, topic modeling, document classification, NLP,

recommendation system

– market basket analysis, survey analysis, election pollings

– genetics, clinical trials, quality control

• widely used in Bayesian inference with Dirichlet priors
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Geometric distribution

• model number of trials needed to achieve first success in independent Bernoulli trials

• PMF, mean, variance

p(k) = p(1− p)k−1 E(X) = 1/p Var(X) = (1− p)/p2

• ML applications

– modeling time-to-conversion, failure analysis, reinforcement learning episode lengths,

web crawling stopping conditions

• memoryless property p(X > m+ n|X > m) = p(X > n)
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Negative binomial distribution

• model number of trials needed to achieve r successes in independent Bernoulli trials

• PMF, mean, variance

p(k) =

(
k − 1

r − 1

)
p
r
(1− p)k−r E(X) = r/p Var(X) = r(1− p)/p2

• ML applications

– modeling overdispersed count data, customer acquisition costs, reliability engineering,

text analysis for word frequencies

• often used when Poisson assumptions are violated due to overdispersion
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Poisson distribution

• model number of events occurring in fixed interval of time or space

• PMF, mean, variance (λ > 0)

p(k) = e
−λ
λ
k
/k! E(X) = λ Var(X) = λ

• ML applications

– modeling web traffic, system failures

– word counts (in NLP), user interactions (in recommendation systems)

• approximates binomial when n is large & p is small with = np

• sum of independent Poisson variables is Poisson
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Hypergeometric distribution

• model number of successes in n draws without replacement from finite population of

size N containing K successes

• PMF, mean, variance (N,K ∈ N with N > K)

p(k) =

(K
k

)(N−K
n−k

)(N
n

) E(X) =
nK

N
Var(X) =

nK

N
·
N −K
N

·
N − n
N − 1

• ML applications

– sampling without replacement, quality control testing

– feature selection validation, A/B testing with finite populations
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Uniform distribution

• model equally likely outcomes over continuous interval [a, b] representing complete

uncertainty within bounded range

• PDF, mean, variance (a, b ∈ R with b > a)

p(x) = 1/(b− a)I[a,b](x) E(X) = (a+ b)/2 Var(X) = (b− a)2/12

• ML applications

– Monte Carlo sampling, generating baseline distributions for hypothesis testing

• maximum entropy distribution for bounded continuous support

• foundation for pseudo-random number generation and inverse transform sampling
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Gaussian distribution

• most important continuous distribution

• model symmetric bell-shaped data arising from many natural processes

• PDF, mean, variance (µ ∈ R, σ > 0)

p(x) =
1

√
2πσ

e
−(x−µ)2/2σ2

E(X) = µ Var(X) = σ
2

• ML applications

– linear regression error terms, NN weight initialization, PCA, noise modeling

• invariant under linear transformations, maximum entropy for given mean and variance
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Multivaraite Gaussian distribution

• generalize scalar Gaussian to random vector

• PDF, mean, variance (µ ∈ Rn, Σ ∈ Sn++)

p(x) =
1

(2π)n/2 det(Σ)1/2
e
−1
2(x−µ)

TΣ−1(x−µ)
E(X) = µ Cov(X) = Σ

• ML applications

– Gaussian mixture, PCA, Kalman filtering, Gaussian processes, latent variable models

• maximum likelihood estimation having closed-form solution, foundation for many

Bayesian models
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Exponential distribution

• model time between events in Poisson process, representing memoryless waiting times

or lifetimes

• PDF, mean, variance (λ > 0)

p(x) = λe
−λx

I[0,∞)(x) E(X) = 1/λ Var(X) = 1/λ
2

• ML applications

– system failure times, web session durations, survival analysis

• memoryless property p(X > s+t|X > s) = p(X > t) - only continuous distribution

with this property, minimum of exponentials is exponential
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Gamma distribution

• model positive continuous values - generalizing exponential distribution to allow for more

flexible shapes, e.g., for waiting times for multiple events

• PDF, mean, variance (α, β > 0)

p(x) =
βα

Γ(α)
x
α−1

e
−βx

I[0,∞)(x) E(X) = α/β Var(X) = α/β
2

• ML applications

– survival analysis, queuing theory

• exponential is special case when α = 1, sum of independent exponentials is gamma,

conjugate prior for Poisson and exponential distributions
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Beta distribution

• model probabilities and proportions, defined on [0, 1] with flexible shapes from uniform

to highly skewed

• PDF, mean, variance (α, β > 0)

p(x) =
Γ(α, β)

Γ(α)Γ(β)
x
α−1

(1−x)β−1 E(X) =
α

α+ β
Var(X) =

αβ

(α+ β)2(α+ β + 1)

• ML applications

– modeling success rates, A/B testing, probability calibration

• uniform is special case when α = β = 1, conjugate prior for Bernoulli & binomial

related to Dirichlet distribution

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 43



Sunghee Yun Oct 06, 2025

Log-normal distribution

• model positive values where logarithm follows normal distribution, representing

multiplicative processes and heavy-tailed phenomena

• PDF, mean, variance (µ ∈ R, σ > 0)

p(x) = e
−(log x−µ)2/2σ2

/xσ
√
2π E(X) = e

µ+σ2/2
Var(X) = (e

σ2−1)e2µ+σ
2

• ML applications

– modeling income distributions, stock prices, file sizes, network traffic, biological

measurements, computational complexity

• heavy right tail, multiplicative central limit theorem

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 44



Sunghee Yun Oct 06, 2025

Chi-square distribution

• model sum of squares of independent standard normal random variables, fundamental

in statistical testing and confidence intervals

• PDF, mean, variance (ν ∈ N - degree of freedom)

p(x) =
1

2ν/2Γ(ν/2)
x
ν/2−1

e
−x/2

I[0,∞)(x) E(X) = ν Var(X) = 2ν

• ML applications

– goodness-of-fit testing, feature selection, confidence intervals for variance,

regularization in NN

• special case of gamma distribution, sum of independent chi-squares is chi-square
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Student’s t-distribution

• model sum of squares of independent standard normal random variables, fundamental

in statistical testing and confidence intervals

• PDF, mean, variance (ν > 0 degrees of freedom - almost always positive integer)

p(x) =
Γ((ν + 1)/2)
√
πνΓ(ν/2)

(1 + x
2
/ν)

−(ν+1)/2

E(X) =

{
0 if ν > 1

undefined otherwise

Var(X) =


ν/(ν − 2) if ν > 2

∞ if 1 < ν ≤ 2

undefined otherwise

• ML applications

– Bayesian inference, robust regression, confidence intervals with small samples,

uncertainty quantification in DL
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• heavier tails than normal, approaches standard normal as ν approaches ∞, symmetric

around zero, undefined moments for small ν
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Weibull distribution

• model survival times & failure rates with flexible hazard functions, generalizing

exponential distribution for reliability analysis

• PDF, mean, variance (λ, k > 0)

p(x) = (k/λ)(x/λ)
k−1
e
−(x/λ)k

I[0,∞)(x) E(X) = λΓ(1 + 1/k)

• ML applications

– survival analysis, reliability engineering, wind speed modeling, NN activation functions,

extreme value theory

• flexible hazard function, minimum of Weibull variables is Weibull
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Cauchy distribution

• model heavy-tailed symmetric data with undefined mean and variance, arising in physics

and robust statistics

• PDF, mean, variance (x0 ∈ R, γ > 0)

p(x) =
1

πγ(1 + ((x− x0)/γ)2)
E(X) = undefined Var(X) = undefined

• ML applications

– robust statistics, modeling outliers, Bayesian inference with heavy-tailed priors, physics

simulations, anomaly detection

• no defined moments, stable distribution, ratio of two independent normals is Cauchy
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Laplace distribution

• model symmetric data with heavier tails than normal, representing difference between

two independent exponential variables

• PDF, mean, variance (µ ∈ R, b > 0)

p(x) =
1

2b
exp(−|x− µ|/b) E(X) = µ Var(X) = 2b

2

• ML applications

– lasso, robust regression, sparse coding, image processing, privacy-preserving ML

• maximum entropy for given mean absolute deviation, related to L1 penalty, robust to

outliers (fundamentally more than normal distribution)
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Pareto distribution

• model heavy-tailed phenomena following power-law distributions, representing “80-20

rule” and scale-free networks

• PDF, mean, variance (xm, α > 0)

p(x) = αx
α
m/x

α+1

E(X) =

{
∞ if α ≤ 1

αxm/(α− 1) if α > 1

Var(X) =

{
∞ if α ≤ 2

αx2
m/(α− 1)2(α− 2) if α > 2

• ML applications

– model wealth distributions, network degree distributions, web page rankings, file sizes,

NLP
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• heavy right tail, scale-free property, finite moments only for sufficiently large α, basis

for power-law distributions

PDF CDF
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The optimal estimator

• estimation problem

– for two random variables X ∈ Rn & Y ∈ Rm

– design estimator or predictor g : Rn → Rm to make g(X) as close as possible to Y

• when closeness measured by mean-square-error (MSE), the optimal solution exists

g
∗
(x) = E(Y |X = x)
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Proof of optimality

E
X,Y

(g(X)− g∗(X))
T
(g
∗
(X)− Y ) = E

X
E
Y
((g(X)− g∗(X))

T
(g
∗
(X)− Y )|X)

= E
X
((g(X)− g∗(X))

T
E
Y
(g
∗
(X)− Y )|X)

= 0

hence

E ∥g(X)− Y ∥22 = E ∥g(X)− g∗(X) + g
∗
(X)− Y ∥22

= E ∥g(X)− g∗(X)∥22 + E ∥g∗(X)− Y ∥22 + 2E(g(X)− g∗(X))
T
(g
∗
(X)− Y )

= E ∥g(X)− g∗(X)∥22 + E ∥g∗(X)− Y ∥22
≥ E ∥g∗(X)− Y ∥22
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Regression

• in most cases, not possible to obtain g∗ (unless, e.g., full knowledge of join PDF)

• regression problem

– given data set D = {(x1, y1), . . . , (xN , yN)} ⊂ Rn × Rm

– find g : Rn → Rm to make g(X) as close as possible to Y

• given certain regression method, regressor depends on dataset D

g(·;D)
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Bias & variance

assuming D is random variable for dataset D

• estimation MSE is

E
X,Y,D

∥g(X;D)− Y ∥22

= E
X,D
∥g(X;D)− E

D
g(X;D)∥22︸ ︷︷ ︸

variance

+E
X
∥E
D
g(X;D)− g∗(X)∥22︸ ︷︷ ︸

bias

+ E
X,Y
∥g∗(X)− Y ∥22︸ ︷︷ ︸

noise

= E
X,D
∥g(X;D)− E

D
g(X;D)∥22︸ ︷︷ ︸

variance

+ E
X,Y
∥E
D
g(X;D)− Y ∥22︸ ︷︷ ︸

bias + noise

• bias & variance

– bias measures how good model is in average

– variance measures how much model varies depending on dataset it is trained on

• noise cannot be reduced even with the optimal predictor
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Model choice & hyperparameter optimization

• want to choose model or modeling method to make both bias & variance low

– (too) complex models have low bias, but high variance

– (too) simple models have low variance, but high bias

• usually solved by hyperparameter optimization

– sometimes called hyperparameter tuning
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MLE

• maximum likelihood estimation (MLE)

– assume parameterized distribution of X ∈ Rn by θ ∈ Θ - p(x; θ)

– find θ maximizing likelihood function

p(x1, . . . , xN ; θ) =

N∏
i=1

p(xi; θ)

• MLE solution

θ̂MLE = argmax
θ∈Θ

N∏
i=1

p(xi; θ)
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MAP estimation

• maximum a posteriori (MAP) estimation

– assume prior knowledge of θ - p(θ)

– assume parameterized distribution of X ∈ Rn by θ - p(x|θ)
– find θ maximizing posteriori probability

p(θ|x1, . . . , xN)

– Bayes’ theorem implies p(θ|x1, . . . , xN) ∝ p(θ)
∏N

i=1 p(xi|θ)
• MAP solution

θ̂MAP = argmax
θ∈Θ

p(θ)

N∏
i=1

p(xi|θ)
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Bayesian inference

• both MLE & MAP estimation are point estimations

• Bayesian inference

– updates prior distribution by replacing it with posterior distribution

• conjugate prior

– if prior can be further parameterized by hyperparameter α and posterior is in same

probability distribution family, both prior and posterior called conjugate distributions,

prior called conjugate prior

p(θ;α)

– in this case, can update hyperparameter α, i.e., find α+ such that

p(θ;α
+
) = p(θ|x1, . . . , xN ;α) =

p(θ;α)
∏N

i=1 p(xi|θ;α)
p(x1, . . . , xN ;α)
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Bayesian algorithms & methods

• exact inference methods

– conjugate priors - e.g., Beta-Binomial, Normal-Normal, etc.

• Markov Chain Monte Carlo (MCMC)

– Metropolis-Hastings algorithm, Gibbs sampling, Hamiltonian Monte Carlo (HMC)

• variational inference (VI)

– mean field variational Bayes - assuming parameter independence for tractability

– structured variational inference - maintaining dependencies & inference tractability

– variational autoencoder (VAE) - NN-based VI for complex distributions
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Pros & cons of Bayesian inference

• pros

– principled uncertainty quantification - providing complete probability distributions

– incorporates prior knowledge - allowing to formally include domain expertise, etc.

– coherent framework - providing mathematically consistent approach

– natural sequential learning - easily handles streaming data or online learning scenarios

– interpretable results - outputs directly interpretable as probabilities

• cons

– computational complexity - often requiring sophisticated sampling methods

– prior sensitivity, scalability issues, implementation difficulty, slower inference, model

selection challenges
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Machine learning

• ML

– subfield of computer science that

“gives computers the ability to learn without being explicitly programmed.”

- Arthur Samuel (1959)

– not magic, still less intelligent than humans for many cases

– numerically minimizes certain (mathematical) loss function to (indirectly) solve some

statistically meaningful problems
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Two famous quotes and one non-famous quote

• Albert Einstein

The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest possible number of hypotheses or axioms.

• Alfred North Whitehead

Civilization advances by extending the number of important operations which we

can perform without thinking about them. - Operations of thought are like cavalry

charges in a battle – they are strictly limited in number, they require fresh horses,

and must only be made at decisive moments.

• Demis Hassabis

. . . biology can be thought of as information processing system, albeit

extraordinarily complex and dynamic one . . . just as mathematics turned out

to be the right description language for physics, biology may turn out to be the

perfect type of regime for the application of AI!
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Supervised learning

• most basic and widely used type of ML

• model is trained on dataset where correct output or “label” is provided for each input

• use cases

– image classification, object detection, semantic segmentation

– natural language processing (NLP) - text classification, sentiment analysis

– predictive modeling, medical diagnosis

• algorithms

– linear regression, logistic regression, decision trees, random forest

– support vector machine (SVM), k-nearest neighbors (kNN)
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Unsupervised learning

• model is given dataset without any labels or output

• model finds patterns & structure within data on its own

• use cases

– clustering, dimensionality reduction

– anomaly detection, generative models

• algorithms

– k-means clutering, hierarchical clustering, principal component analysis (PCA)

– t-distributed stochastic neighbor embedding (t-SNE)
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Reinforcement learning

• (quite different from supervised & unsupervised learnings)

• model learns from consequences of its actions

– model receives feedback on its performance; feedback called reward

– uses that information to adjust its actions and improve its performance over time

• use cases

– robotics, game playing, autonomous vehicles, industrial control

– healthcare, finance

• algorithms

– Q-learning, SARSA, DQN, A3C, policy gradient
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Loss minimization

• assume data set {(x(1), y(1)), . . . , (x(m), y(m))} with x(i) ∈ Rn, y(i) ∈ Rq

• loss minimization is to solve

minimize 1
m

∑m
i=1 l(y

(i), f(x(i); θ))

where optimization variable is θ ∈ Rp, f : Rn × Rp → Rq is model function &

l : Rq × Rq → R+ is loss function

– find model with smallest modeling error

• loss function examples

– Eucleadina norm (2-norm) - ∥y − ŷ∥22
– 1-norm - ∥y − ŷ∥1
– soft-max - yT exp(ŷ)/1T exp(ŷ)
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Statistical problem formulation

• assume data set Xm = {x(1), . . . , x(m)}

– drawn independently from (true, but unknown) data generating distribution pdata(x)

• maximum likelihood estimation (MLE) is to solve

maximize pmodel(X; θ) =
∏m

i=1 pmodel(x
(i); θ)

where optimization variable is θ

– find most plausible or likely model that fits data

• equivalent (but more numerically tractable) formulation

maximize log pmodel(X; θ) =
∑m

i=1 log pmodel(x
(i); θ)
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MLE & KL divergence

• in information theory, Kullback-Leibler (KL) divergence defines distance between two

probability distributions p & q

DKL(p∥q) = E
X∼p

log p(X)/q(X) =

∫
x∈Ω

p(x) log
p(x)

q(x)
dx

• KL divergence between data distribution pdata & model distribution pmodel can be

approximated by Monte Carlo method as

DKL(pdata∥pmodel(θ)) ≃
1

m

m∑
i=1

(log pdata(x
(i)
)− log pmodel(x

(i)
; θ))

where x(i) are drawn (of course) according to pdata

• hence minimizing KL divergence is equivalent to solving MLE problem!
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Equivalence of MLE to MSE

• assume model is Gaussian, i.e., y ∼ N (gθ(x),Σ) (gθ(x) ∈ Rp, Σ ∈ Sp++)

p(y|x; θ) =
1

√
2π

p|Σ|1/2
exp

(
−
1

2
(y − gθ(x))T Σ

−1
(y − gθ(x))

)

• assuming that Σ = αIp, log-likelihood becomes

m∑
i=1

log p(x
(i)
, y

(i)
; θ) =

m∑
i=1

log p(y
(i)|x(i)

; θ)p(x
(i)
)

= −
m∑
i=1

∥y(i) − gθ(x(i)
)∥22/2α−

pm

2
log(2πα) +

m∑
i=1

log p(x
(i)
)

• hence minimizing mean-square-error (MSE) is equivalent to solving MLE problem!
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Numerical optimization problem formulation

• (true) problem to solve

minimize E l(gθ(X), Y )

– impossible to solve

• loss minimize formulation - surrogate problem to solve

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

• formulation with regularization

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i)) + γr(θ)

• stochastic gradient descent (SGD)

θ
k+1

= θ
k − αk∇f(θk)
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Deep learning (DL)

• machine learning using artificial neural networks with multiple layers for

– automatically learning hierarchical representations of data

• key components

– deep neural networks, hidden layers, backpropagation, activation functions

– hierarchical feature learning, representation learning, end-to-end learning

• key breakthroughs enabling DL

– massively available data, GPU computing, algorithmic advances
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Convolutional neural network (CNN)

• specialized DL learning architecture designed for

– processing grid-like data such as images

– where spatial relationships between pixels matter

• key components

– convolutional layers, pooling layers, activation functions, fully connected layers

• how it works

– feature extraction, translation invariance, parameter sharing

• why it excels

– local connectivity, hierarchical learning
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Recurrent neural network (RNN)

• neural network designed for

– processing sequential data by maintaining memory of previous inputs

• key components

– hidden states, recurrent connections, input/output layers, weight sharing

• how it works

– sequential processing, memory mechanism, temporal dependencies

• why it excels

– variable length input, context awareness, flexible architecture

• variants - long short-term memory (LSTM), gated recurrent unit (GRU)
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Notations

• p / q - dimension of input / output spaces

• l : Rq × Rq → R+ - loss function

• d - depth of neural network

• ni (1 ≤ i ≤ d) - number of perceptrons in ith layer

• z[i] ∈ Rni - input to ith layer

• o[i] ∈ Rni - output of ith layer

• W [i] ∈ Rni×ni−1 - weights of connections between (i− 1)th and ith layer

• w[i] ∈ Rni×ni−1 - bias weights of ith layer

• ϕ[i] : Rni → Rni - activation functions of ith layer
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Basic unit & activation function

• basic unit

• activation function
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Neural net equations

• modeling function for the (deep) neural network gθ : R
p → Rq

gθ = ϕ
[d]
θ ◦ ψ

[d]
θ ◦ · · · ◦ ϕ

[1]
θ ◦ ψ

[1]
θ

or equivalently

gθ(x) = ϕ
[d]
θ (ψ

[d]
θ (· · · (ϕ[1]

θ (ψ
[1]
θ (x)))))

• for ith layer

– output via (componentwise) activation function

o
[i]

= ϕ
[i]
(z

[i]
)⇔ o

[i]
j = ϕ

[i]
j (z

[i]
j ) (1 ≤ j ≤ ni)

– input via affine transformation ψ[i] : Rni−1 → Rni

z
[i]

= ψ
[i]
(o

[i−1]
) = W

[i]
o
[i−1]

+ w
[i]
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Stochastic gradient descent

• ML training tries to minimize some loss function - f(θ) depends on (not only θ, but

also) batch of data (x(1), y(1)), . . . (x(m), y(m))

minimize f(θ)

• while exist hundreds of optimization methods solving this problem

– the only method used widely is stochastic gradient descent!

• (stochastic) gradient descent

θ
k+1

= θ
k − αk∇f(θk)

• backpropagation is used to evaluate this (stochastic) gradient using chain rule

batch stochastic mini-batch
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Chain rule

• suppose

– two functions f : Rn → Rm & g : Rm → R

– Jacobian of f - Df : Rn → Rm×n

– gradient of g - ∇g : Rm → Rm

• gradient of composite function h = g ◦ f

∇h(θ) = Df(θ)
T∇g(f(θ)) ∈ Rn (using matrix-vector multiplication)

in other words

∂

∂θi
h(θ) =

m∑
j=1

∂

∂θi
fj(θ)∇jg(f(θ)) (scalar version)
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Loss function & its gradient

• assume cost function of deep neural network is

f(θ) =
1

m

m∑
k=1

l(gθ(x
(k)

), y
(k)

) =
1

m

m∑
k=1

fk(θ)

where

fk(θ) = l(gθ(x
(k)

), y
(k)

)

• gradient is

m∇θf(θ) =
m∑
k=1

∇θl(gθ(x
(k)

), y
(k)

) =
m∑
k=1

∇θfk(θ)

– i.e., evaluate gradient ∇θfk(θ) for each data point (x(k), y(k))
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Hidden layers

ϕ
[i−1]
1z

[i−1]
1 o

[i−1]
1

ϕ
[i−1]
2z

[i−1]
2 o

[i−1]
2

ϕ
[i−1]
3z

[i−1]
3 o

[i−1]
3

ϕ
[i−1]
4z

[i−1]
4 o

[i−1]
4

(i− 1)th hidden layer

ϕ
[i]
1z

[i]
1 o

[i]
1

ϕ
[i]
2z

[i]
2 o

[i]
2

ϕ
[i]
3z

[i]
3 o

[i]
3

ith hidden layer

W
[i]
1,1

W
[i]
2,1

W
[i]
3,1 W

[i]
1,2

W
[i]
2,2

W
[i]
3,2

W
[i]
1,3

W
[i]
2,3

W
[i]
3,3

W
[i]
1,4

W
[i]
2,4

W
[i]
3,4
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Backpropagation formula using chain rule

• for each data (x(k), y(k))

– via activation function

∂

∂z
[i]
j

fk(θ) =
∂

∂o
[i]
j

fk(θ)ϕ
[i]
j

′
(o

[i]
j ) for 1 ≤ j ≤ ni (1)

where ϕ
[i]
j

′
(o

[i]
j ) is derivative of activation function ϕ

[i]
j evaluated at o

[i]
j

– via affine transformation

∂

W
[i]
j,l

fk(θ) = o
[i−1]
l

∂

∂z
[i]
j

fk(θ) for 1 ≤ j ≤ ni & 1 ≤ l ≤ ni−1 (2)

∂

∂w
[i]
j

fk(θ) =
∂

∂z
[i]
j

fk(θ) for 1 ≤ j ≤ ni (3)

∂

∂o
[i−1]
l

fk(θ) =

ni∑
j=1

W
[i]
j,l

∂

∂z
[i]
j

fk(θ) for 1 ≤ l ≤ ni−1 (4)
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Backpropagation formula using matrix-vector multiplication

• for each data (x(k), y(k))

– via activation function

∇
z[i]
fk(θ) = Dϕ

[i]∇
o[i]
fk(θ) (5)

where Dϕ[i] = diag(ϕ
[i]
1

′
(o

[i]
1 ), . . . , ϕ[i]

ni

′
(o[i]ni

)) is Jacobian of ϕ[i] evaluated at o[i]

– via affine transformation

∇
W [i]fk(θ) = ∇

z[i]
fk(θ)o

[i−1]T ∈ Rni×ni−1 (6)

∇
w[i]fk(θ) = ∇

z[i]
fk(θ) ∈ Rni (7)

∇
o[i−1]fk(θ) = W

[i]T∇
z[i]
fk(θ) ∈ Rni−1 (8)
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Backpropagation formula using Python numpy package

• for each data (x(k), y(k))

– via activation function

grad z = phi dir * grad o (9)

where grad z, phi dir, grad o are 1d numpy.ndarray of size ni

– via affine transformation

grad W = numpy.dot(grad z, val o.T) (10)

grad w = grad z.copy() (11)

grad o prev = numpy.dot(grad z, W) (12)

where val o, grad w are 1d numpy.ndarray of size ni, grad o prev is 1d

numpy.ndarray of size ni−1, grad W is 2d numpy.ndarray of shape (ni, ni−1)
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Gradient evaluation using backpropagation

• forward propagation - evaluate for each (x(k), y(k))

gθ(x
(k)

) = ϕ
[d]
θ (ψ

[d]
θ (· · · (ϕ[1]

θ (ψ
[1]
θ (x

(k)
)))))

• backpropagation - evaluate partial derivatives backward

– evaluate gradient with respect to output of output layer o[d] = gθ(x
(k))

∇
o[d]
fk(θ) = ∇y1

l(gθ(x
(k)

), y
(k)

)

– evaluate gradient with respect to input from that with respect to output using (1),

or equivalently, using (5) i.e., evaluate ∇
z[i]
fk(θ) from ∇

o[i]
fk(θ)

– evaluate gradient with respect to weights, bias, and intput of previous layer using

(3), (4), & (2) or equivalently, using (7), (8), & (6) i.e., evaluate ∇
W [i]fk(θ),

∇
w[i]fk(θ) & ∇

o[i−1]fk(θ) from ∇
z[i]
fk(θ)

– repeat back to input layer to evaluate all

∇
W [1]fk(θ),∇w[1]fk(θ), . . . ,∇W [d]fk(θ),∇w[d]fk(θ)
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ML in practice

• define business problem - business objective, success metrics, establish baselines (early)

• data collection - data cleaning, validation & exploratory data analysis (EDA)

• feature engineering - based on domain expertise

• train/validation/test split - stratified sampling, chronological splits for time-series

• model selection or/and hyperparameter optimization

• monitoring, retraining & notification

• start simple, iterative fast (fail fast!), validate business impact - e.g., A/B test
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Best ways to learn AI & ML

• first, learn basics - college classes, online courses, (easy) books

– no need to understand every mathematical details, but should know rough ideas!

• hands-on is MUST!

– learn and practice coding - Python is MUST; do not do (only) R

– learn git - know how to develop efficiently, plus import others’ work

• I think online cources are blessing to mankind!

– can’t say “you can’t do it because I don’t have access to good resource or you don’t

go to good schools” because . . . they are available!

– getting (expensive) certificates is good idea because . . . otherwise you wouldn’t

complete it! :) - and can post it on your LinkedIn!

• would be best if your task at work is related to ML

– however, even if that’s not the case or can’t be the case, can always do your own

personal projects – or contribute to public projects (on github)!
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Books

• The Elements of Statistical Learning - Hastie, Tibshirani & Friedman [HTF01]

• Pattern Recognition and Machine Learning - Christopher M. Bishop [Bis06]

• Deep Learning - Ian Goodfellow, Yoshua Bengio & Aaron Courville [GBC16]

• Reinforcement Learning: An Introduction - Richard S. Sutton & Andrew G. Barto [SB18]

• Machine Learning: A Probabilistic Perspective - Kevin P. Murphy [Mur12]

• Probabilistic Graphical Models - Daphne Koller & Nir Friedman [KF09]

• Convex Optimization - Stephen Boyd & Lieven Vandenberghe [BV04]
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Andrew Ng!

• Andrew Ng

– (co-)founder of “Deep Learning.AI” and “Coursera”, prominent figure in ML & AI

– his courses highly regarded because well-structured and provide insights

• latest Andrew Ng courses

– AI Agents in LangGraph

– AI Agentic Design Patterns with AutoGen

– Introduction to On-device AI

– Multi AI Agent Systems with Crew AI

– Building Multimodal Search and RAG - contrastive learning, multimodality to RAG

– Building Agentic RAG with LlamaIndex

– Quantisation In Depth

– In Prompt Engineering for Vision Models

– Getting Started with Mistral - open-source models (Mistral 7B, Mixtral 8x7B)

– Preprocessing Unstructured Data for LLM
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Reinforcement learning (RL)

• machine learning where agent learns how to take actions to achieve goal

– by maximizing cumulative reward

– while interacting with environment

• learning from interaction - foundational idea underlying all learning & intelligence

• differs from supervised learning

– labeled input and output pairs not presented

– sub-optimal actions need not be explicitly corrected

• focus is finding balance between exploration & exploitation

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning 101



Sunghee Yun Oct 06, 2025

Why Deep RL?

• Koray Kavukcuoglu (director of research at Deepmind) says

If one of the goals we work for here is AI, then it is at the core of that. RL

is a very general framework for learning sequential decision making tasks. And

DL, on the other hand, is (of course) the best set of algorithms we have to

learn representations. And combinations of these two different models is the best

answer so far we have in terms of learning very good state representations of very

challenging tasks that are not just for solving toy domains but actually to solve

challenging real world problems.
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Markov decision process (MDP)

• classical formulation of sequential decision making

– actions influence not just immediate rewards, but also subsequent states, hence,

involving delayed reward

– need to trade-off immediate and delayed reward

• elements - states, actions, reward, and return

• agent interacts with environment

– agent makes decision as to which action to take with knowledge of state it’s in

– action changes (state of) environment

– agent receives reward
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MDP & Markov property

• agent in state St takes action At at t

– receives reward Rt+1 (from environment)

– environment transitions to state St+1

• sequence of random variables - S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, A3, . . .

• Markov property - St+1, Rt+1|St, At, Rt, St−1, At−1, Rt−1, . . . = St+1, Rt+1|St, At

– formally expressed (using PDF)

p (St+1, Rt+1|St, At, Rt, St−1, At−1, Rt−1, . . .) = p (St+1, Rt+1|St, At)
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Policy & return

• policy - conditional probability of At given St

π(A|S) = p(At|St),

• return (at t) - Gt =
∑∞

k=0 γ
kRt+k = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

• γ ∈ [0, 1] - discount factor

– if γ = 0, myopic

– if γ = 1, truly far-sighted

– if γ ∈ (0, 1), considers near-future rewards more importantly than those in far future
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State value function & action value function

• state value function (sometimes referred to simply as value function)

vπ(s) = E
π,p
{Gt|St = s} = E

π,p

{ ∞∑
k=0

γ
k
Rt+k

∣∣∣∣∣St = s

}

– function of state - expected return agent will get from s when following π

• action value function (sometimes referred to simply as action function)

qπ(s, a) = E
π,p
{Gt|St = s, At = a} = E

π,p

{ ∞∑
k=0

γ
k
Rt+k

∣∣∣∣∣St = s, At = a

}

– function of state & action - expected return agent will get from s when agent takes a

• (most) RL algorithms (try to) maximize either of these functions - not maximizing

immediate reward, but long-term return
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Bellman

• Richard E. Bellman

– introduced dynamic programming (DP) in 1953

– proposed Bellman equation as necessary condition for optimality associated with DP
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Bellman equations

• Bellman equation for state value function

vπ(s) =
∑
a

π(a|s)qπ(s, a) =
∑
a

π(a|s)
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(13)

• Bellman equation for action value function

qπ(s, a) =
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

=
∑
s′,r

p(s
′
, r|s, a)

r + γ
∑
a′
π(a

′|s′)qπ(s′, a′)

 (14)
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Bellman equation derviation - state value function

• Markov property implies

– value functions only depend on current state & action taken

– function value closely related to function values of next states

• these facts cleverly used to derive Bellman equations

vπ(s) = E
π,p
{Gt|St = s}

= E
At|St=s

E
π,p
{Gt|St = s, At}

=
∑
a

p(At = a|St = s) E
π,p
{Gt|St = s, At = a}

=
∑
a

π(a|s) E
π,p
{Gt|St = s, At = a}

=
∑
a

π(a|s)qπ(s, a) (15)
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Bellman equation derviation - action value function

qπ(s, a) = E
π,p
{Gt|St = s, At = a}

= E
St+1,Rt+1|St=s,At=a

E
π,p
{Gt|St = s, At = a, St+1, Rt+1}

= E
St+1,Rt+1|St=s,At=a

E
π,p

{ ∞∑
k=0

γ
k
Rt+k+1

∣∣∣∣∣St = s, At = a, St+1, Rt+1

}

= E
St+1,Rt+1|St=s,At=a

E
π,p

{
Rt+1 + γ

∞∑
k=0

γ
k
Rt+k+2

∣∣∣∣∣St = s, At = a, St+1, Rt+1

}

=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

E
π,p

{
Rt+1 + γGt+1|St = s, At = a, St+1 = s

′
, Rt+1 = r

}
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=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γ E

π,p

{
Gt+1|St = s, At = a, St+1 = s

′
, Rt+1 = r

})
=

∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γ E

π,p

{
Gt+1|St+1 = s

′})

=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(16)
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Optimal functions

• define optimal state-value function as that of optimal policy π∗

v∗(s) = vπ∗(s) = max
π∈Π

vπ(s) (17)

• (similarly) define optimal action-value function as that of π∗

q∗(s, a) = qπ∗(s, a) = max
π∈Π

qπ(s, a) (18)
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Bellman optimality equations

(17) & (18) with (15) & (16) imply

• Bellman optimality equation for state value function

v∗(s) = vπ∗(a) = max
a∈A

qπ∗(s, a) = max
a∈A

∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(19)

• Bellman optimality equation for action value function

q∗(s, a) = qπ∗(s, a) =
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ∗(s

′
)
)

=
∑
s′,r

p(s
′
, r|s, a)

(
r + γmax

a′∈A
qπ∗(s

′
, a
′
)

)
(20)
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Dynamic programming (DP)

• collection of algorithms to compute optimal policies given perfect model of environment

as MDP

• provide essential foundation for understanding of RL methods

• all RL algorithms can be viewed as attempts to achieve much the same effect as DP

– only with less computation and without assuming perfect model of environment

• key idea of RL in general

– use of value functions to organize and structure search for good policies
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Policy evaluation (prediction)

• policy evaluation (in DP literature)

– compute state-value function vπ for arbitrary policy π

– also referred to as prediction problem

• existence and uniqueness of vπ guaranteed as long as either

– γ < 1

– eventual termination is guaranteed from all states under policy π

• policy evaluation algorithm uses fact that all state value functions satisfy Bellman

equation (note resemblance to 13) - algorithm described in Table 1

vk+1(s)←
∑
a

π(a|s)
∑
s′,r

p(s
′
, r|s, a)

(
r + γvk(s

′
)
)
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Algorithm - iterative policy evaluation

Inputs: π, MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)

Initialize V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ

Table 1: Iterative Policy Evaluation for estimating V ∼ vπ
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Policy iteration

• iterative process of improving policy to maximize value functions

• algorithm described in Table 2
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Algorithm - policy iteration

Inputs: MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)
1. Initialization

V (s) ∈ R and π(s) ∈ A(s) for all s ∈ S
2. Policy Evaluation

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ
3. Policy Improvement
u← true

For each s ∈ S
b← π(s)

π(s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γvπ(s

′)
)

If b ̸= π(s), then t← false

If u, then stop and return V ∼ v∗ and π ∼ π∗; else go to 2

Table 2: Policy Iteration (using iterative policy evaluation) for estimating π ∼ π∗
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Value iteration

• drawback to policy iteration

– each iteration involves policy evaluation

• policy evaluation step can be truncated without losing convergence guarantees

• value iteration

– policy evaluation is stopped after just one sweep by turning Bellman optimality

equation (19) into update rule

– can be written as simple update operation combining policy improvement and

truncated policy evaluation steps

vk+1(s)← max
a∈A

∑
s′,r

p(s
′
, r|s, a)

(
r + γvk(s

′
)
)

• (in-place version of) algorithm described in Table 3
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Algorithm - value iteration

Inputs: MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)

Initialize V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)← maxa∈A(s)
∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ

Output: deterministic policy π such that

π(s) = argmaxa∈A(s)
∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)

Table 3: Value Iteration for estimating π ∼ π∗
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Monte Carlo methods

• do not assume complete knowledge of environment

• require only experience sample sequences of states, actions & rewards

– from actual or simulated interaction with environment

• require no prior knowledge of environment’s dynamics

– not complete probability distributions required for DP

– yet can still attain optimal behavior

• simulation can be used
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Monte Carlo prediction

• (simply) average returns observed after visits to each state

• Monte Carlo (MC) prediction methods - very similar but slightly different theoretical

properties

– first-visit MC method - most widely studied, dating back to 1940s

– every-visit MC method - extends more naturally to function approximation and

eligibility traces

• first-visit MC prediction algorithm described in Table 4
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Algorithm - first-visit MC prediction

Inputs: π

Initialize:
V (s) ∈ R for all s ∈ S
R(s)← list() for all s ∈ S

Loop:
Generate an episode following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St).append(G)
V (St)← R(St).average()

Until a certain criterion is satisfied

Table 4: First-visit MC prediction for estimating V ∼ vπ
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Monte Carlo control

• proceed according to same pattern as DP, i.e., according to idea of generalized policy

iteration (GPI)

• maintain both approximate policy & approximate value functions

– value functions repeatedly altered to more closely approximate value function for

current policy

– policy repeatedly improved with respect to current value function

• complete simple algorithm, called Monte Carlo with Exploring Starts (ES) described in

Table 5
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Algorithm - MC ES

Initialize:
π(s) ∈ A(s) for all s ∈ S
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s)
R(s, a)← list() for all s ∈ S and a ∈ A(s)

Loop:
Choose S0 ∈ S, A0 ∈ A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0 following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St,At).append(G)
Q(St,At)← R(St,At).average()
π(St)← argmaxa∈A(St)

Q(St, a)

Until a certain criterion is satisfied

Table 5: MC ES for estimating π ∼ π∗
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Monte Carlo control without exploring starts

• want to avoid unlikely assumption of exploring starts

• only general way to ensure that all actions are selected infinitely often is for agent to

continue to select them

• two approaches to ensure this

– on-policy methods - attempt to evaluate or improve policy used to make decisions

– off-policy methods - evaluate or improve policy different from used to generate data

• on-policy first-visit MC control using ϵ-greedy, not using unrealistic assumption of

exploring starts, described in Table 6
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Algorithm - on-policy first-visit MC control

Algorithm parameters: small ϵ > 0

Initialize:
π(s) ∈ A(s) for all s ∈ S
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s)
R(s, a)← list() for all s ∈ S and a ∈ A(s)

Loop:
Choose S0 ∈ S, A0 ∈ A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0 following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St,At).append(G)
Q(St,At)← R(St,At).average()

A∗ ← argmaxa∈A(St)
For all a ∈ A(St)

π(a|St)←
{

1− ϵ+ ϵ/|A(St)| if a = A∗
ϵ/|A(St)| if a ̸= A∗

Until a certain criterion is satisfied

Table 6: On-policy first-visit MC control (for ϵ-soft policies) for estimating π ∼ π∗
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Temporal-difference (TD) learning

• combination of MC ideas & DP ideas

– like MC, learn directly from raw experience without model of environment’s dynamics

– like DP, update estimates based in part on other learned estimates, without waiting

for final outcome - they bootstrap

• relationship between TD, DP & MC methods - recurring theme in theory of RL

• will start focusing on policy evaluation or prediction problem, i.e., estimating vπ

• control problem (to find optimal policy)

– DP, TD & MC methods all use some variation of generalized policy iteration (GPI)
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TD prediction

• both TD & MC use experience to solve prediction problem

• simple every-visit MC method suitable for nonstationary environments

V (St)← V (St) + α(Gt − V (St)) = (1− α)V (St) + αGt

• TD methods wait only until next time step

– at t+ 1, form target and make update using reward Rt+1 & estimate V (St+1)

• TD(0) - one-step TD - simplest TD method

V (St) ← V (St) + α(Rt+1 + γV (St+1)− V (St))

= (1− α)V (St) + α(Rt+1 + γV (St+1)) (21)

– TD(0) is special case of TD(λ) & n-step TD methods

• TD(0) described in Table 7 in procedural form
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Algorithm - TD(0) for estimating vπ

Inputs: the policy π to be evaluated
Algorithm parameters: step size α ∈ (0, 1]

Initialize:
V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A← action given by π for S

Take action A, observe R, S′

V (S)← (1− α)V (S) + α(R + γV (S′))
S ← S′

until S is terminal
Until a certain criterion is satisfied

Table 7: TD(0) for estimating vπ.
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TD error

• TD error - quantity in brackets in TD(0) update

δt := Rt+1 + γVt(St+1)− Vt(St) (22)

– difference between estimated value of St & better estimate Rt+1 + γV (St+1)

– arise in various forms throughout RL

• define modified TD error

δ
′
t := Rt+1 + γVt+1(St+1)− Vt(St) (23)
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Monte Carlo error

• MC error

– difference between return along path from t to terminal state & state-value function

Gt − Vt(St) =

T−1∑
k=t

γ
k−t
δ
′
k =

T−t−1∑
k=0

γ
k
δ
′
k+t (24)

– can be expressed as sum of discounted (modified) one-step TD errors.

• assuming that every Vt does not change during episode

– δt coincides with δ
′
t

– hence, (24) becomes

Gt − V (St) =

T−1∑
k=t

γ
k−t
δk =

T−t−1∑
k=0

γ
k
δk+t. (25)
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MC error - derivation

• MC error

Gt − Vt(St) = Rt+1 + γGt+1 − Vt(St)

= Rt+1 + γ
(
Gt+1 − Vt+1(St+1) + Vt+1(St+1)

)
− Vt(St)

= Rt+1 + γVt+1(St+1)− Vt(St) + γ
(
Gt+1 − Vt+1(St+1)

)
= δ

′
t + γ

(
Gt+1 − Vt+1(St+1)

)
= δ

′
t + γδ

′
t+1 + γ

2
(
Gt+2 − Vt+2(St+2)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1 (
GT−1 − VT−1(ST−1)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1 (
RT + γVT (ST )− VT−1(ST−1)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1
δ
′
T−1

=

T−1∑
k=t

γ
k−t

δ
′
k =

T−t−1∑
k=0

γ
k
δ
′
k+t

where fact that state-value function for terminal state, VT−1(ST ), is 0 is used
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Sarsa - on-policy TD Control

• (as in all on-policy methods)

– continually estimate qπ for behavior policy π

– (at the same time) change π toward greediness with respect to qπ

• convergence properties depend on nature of policy’s dependence on Q

– examples of policies - ϵ-greedy or ϵ-soft

• converges with probability 1 to an optimal policy & optimal action-value function as

long as

– all state–action pairs are visited infinite number of times

– policy converges in the limit to greedy policy

• algorithm is described in Table 8
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Algorithm - sarsa for estimating Q ∼ q∗

Algorithm parameters: step size α ∈ (0, 1] and small ϵ > 0

Initialize:
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s) except Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., ϵ-greedy)
Loop for each step of episode:

Take action A, observe R, S′

Choose A′ from S′ using policy derived from Q (e.g., ϵ-greedy)

Q(S,A)← (1− α)Q(S,A) + α(R + γQ(S′, A′))
S ← S′, A← A′,

until S is terminal
Until a certain criterion is satisfied

Table 8: Sarsa (on-policy TD control) for estimating Q ∼ q∗
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Q-learning - off-policy TD control

• development of off-policy TD control algorithm known as Q-learning (Watkins, 1989) -

one of early breakthroughs in RL

• update defined by

Q(St, At) ← Q(St, At) + α

(
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

)
= (1− α)Q(St, At) + α

(
Rt+1 + γmax

a
Q(St+1, a)

)
• learned action-value function Q directly approximates optimal action-value function q∗,

independent of policy being followed

– dramatically simplifies analysis of algorithm & enabled early convergence proofs

• Q has been shown to converge with probability 1 to q∗

• algorithm described in Table 9
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Algorithm - Q-learning for estimating π ∼ π∗

Algorithm parameters: step size α ∈ (0, 1] and small ϵ > 0

Initialize:
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s) except Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ϵ-greedy)

Take action A, observe R, S′

Q(S,A)← (1− α)Q(S,A) + α(R + γmaxa∈A(S′)Q(S′, a))

S ← S′
until S is terminal

Until a certain criterion is satisfied

Table 9: Q-learning (off-policy TD control) for estimating π ∼ π∗
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Deep Q-learning revolution

• problem with classical Q-learning

– limited to small, discrete state spaces

– Q-table becomes intractable for complex environments

– cannot handle high-dimensional inputs, e.g., images, continuous states

• deep Q-networks (DQN)

– replace Q-table with deep neural network (DNN)

– DNN approximates action-value function Q(s, a)

– handle raw pixel inputs, continuous states

– enables RL in complex environments, e.g., Atari games, robotics
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DQN architecture & key innovations

• experience replay

– store transitions (s, a, r, s′) in replay buffer & sample mini-batches for training

– break correlation between consecutive samples to improve data efficiency and stability

• target network

– separate target network for computing TD targets being updated periodically

– reduce correlation between Q-values & targets to improve training stability

• DQN loss function

L(θ) = E((r + γmax
a′

Q(s
′
, a
′
; θ
−
)−Q(s, a; θ))

2
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Policy gradient methods

• limitations of value-based approaches

– indirect policy optimization

– difficulty with continuous action spaces

– may not find stochastic optimal policies

• policy gradient methods

– direct policy optimization & natural handling of continuous actions

– can learn stochastic policies & better convergence properties (in some cases)
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Policy gradient algorithm

• merit cuntion - J(θ) = E(V (S0)|πθ) = E
(∑∞

t=0 γ
tRt

∣∣πθ)
• maximization problem formulation

maximize J(θ)

subject to θ ∈ Θ

• REINFORCE algorithm

θ
k+1

= θ
k
+ α

k∇J(θk)
where

∇θJ(θ) = E(∇θ log π(a|s; θ)Qπ
(s, a))
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Q-learning vs policy gradients

• Q-learning

– does not always work

– usually more sample-efficient (when it works)

– challenge - exploration

– no guarantee for convergence

• policy gradients

– very general, but suffers from high variance

– requires lots of samples

– converges to local minima of J(θ)

– challenge - sample-efficiency
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AlphaGo

• Go board marked with 19×19 grid - (19× 19)! = 361! ≈ 1.44× 10768

1437923258884890654832362511499863354754907538644755876127282765299227795534389618856841908003141196
0714137944348905859683839682333043216077138088370565578796691924861827097800358990211005794501073330
5079262777172275041226808677528136885057526541812043502150623466302643442673632627092764643302557772
2695595343233942204301825548143785112222186834487969871267194205609533306413935710635197200721473378
7338269803085351043174203653673779887217565513450041291061650506154496265581102824241428406627054585
5623101563752892899924857388316647687165212001536218913733713768261861456295440900774337589490771443
9917299937133680728459000034496420337066440853337001284286412654394495050773954560000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000

• deep reinforcement learning with Monte Carlo tree search

– trained on thousands of years of Go game history

– AlphaGo Zero learns by playing against itself

• development experience, insight, knowledge, know-how transferred to AlphaFold
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AlphaGo - hybrid approach - 2016

• components

– policy network - predicts human expert moves

– value network - evaluates board positions

– Monte Carlo tree search (MCTS) - explores game tree

– rollout policy - fast playouts for MCTS

• training process

– supervised learning - train policy network on human games

– RL - improve policy through self-play

– regression - train value network on self-play positions
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AlphaGo Zero - pure RL revolution - 2017

• breakthrough - no human knowledge

– learns from scratch through self-play, no human game data or handcrafted features

– much stronger than original AlphaGo

• simplified architecture

– single neural network with two heads - policy head π(a|s) & value head v(s)

• key innovations

– residual NN - enable very deep networks

– MCTS with NN - perfect integration

– self-play curriculum - gradually increasing difficulty
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Autonomous systems

• Waymo - Google

– RL for trajectory planning and decision making

– Simulation-based training with millions of scenarios

– Integration with traditional planning algorithms

• Tesla Autopilot

– RL for lane changes and complex driving scenarios

– Real-world data collection and training
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Gaming & entertainment

• OpenAI Five for playing Dota 2

– complex multi-agent environment

– long-term planning (45+ minute games)

• DeepMind AlphaStar for playing StarCraft II

– league-based training, population-based methods

– partial observability challenges

– human-level performance
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Robotics

• Boston Dynamics

– RL for dynamic locomotion

– sim-to-real transfer

– robust control policies

• Covariant - warehouse automation

– RL for robotic picking and manipulation

– real-world deployment in warehouses

– continuous learning from experience
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Finance & trading

• JP Morgan Chase

– algorithmic trading with RL

– portfolio optimization

– risk management

• Two Sigma, Renaissance Technologies

– market making and execution

– multi-agent trading environments
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RLHF - RL from human feedback

• ChatGPT, GPT-4 training pipelines

– supervised fine-tuning - train on human demonstrations

– reward model training - learn human preferences

• key components

– reward model - predicts human preferences

– KL penalty - prevents deviation from original model

– constitutional AI - self-improvement through AI feedback
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Applications in LLMs

• OpenAI - ChatGPT/GPT-4

– RLHF for helpful, harmless, honest responses

– massive scale PPO training

– human preference learning

• Anthropic - Claude

– constitutional AI methods

– self-supervised preference learning

– scalable oversight techniques
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Classical to modern RL

• key progressions

– tabular→ function approximation→ DNN / model-free→ model-based→ hybrid

– single agent→ multi-agent→ large-scale systems

• core principles intact

– exploration vs exploitation trade-off / Bellman equations & Bellman optimality

– policy improvement & evaluation / generalized policy iteration (GPI)

• modern additions

– scale and compute power / human feedback integration

– safety & robustness considerations / multi-modal and foundation models (e.g., LLM)
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Selected references & sources

• Robert H. Kane “Quest for Meaning: Values, Ethics, and the Modern Experience” 2013

• Michael J. Sandel “Justice: What’s the Right Thing to Do?” 2009

• Daniel Kahneman “Thinking, Fast and Slow” 2011

• Yuval Noah Harari “Sapiens: A Brief History of Humankind” 2014

• M. Shanahan “Talking About Large Language Models” 2022

• A.Y. Halevry, P. Norvig, and F. Pereira “Unreasonable Effectiveness of Data” 2009

• A. Vaswani, et al. “Attention is all you need” @ NeurIPS 2017

• S. Yin, et. al. “A Survey on Multimodal LLMs” 2023

• Chris Miller “Chip War: The Fight for the World’s Most Critical Technology” 2022

• CEOs, CTOs, CFOs, COOs, CMOs & CCOs @ startup companies in Silicon Valley

• VCs on Sand Hill Road - Palo Alto, Menlo Park, Woodside in California, USA
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